ПРЕДПРИЯТИЕ МАКСАЭРО

- Производство воздуховодов и систем вентиляции
- Клапаны противопожарные
- Клапаны дымоудаления
- Вентиляторы общепром, дымоудаления, крышные

220056, г. Минск, ул. Стариновская, 15

Тел./факс: +375 17 244-67-44, 258-67-51, 347-73-56, 252-54-27

Velcom: +375 29 603-88-99 E-mail: **olegaero**@yandex.by

www.maxaero.by

Описание типа СПАС05

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры эмиссионные «СПАС-05»

Назначение средства измерений

Спектрометры эмиссионные «СПАС-05» предназначены для измерений содержания различных элементов, входящих в состав металлов и сплавов в соответствии со стандартизированными и аттестованными методиками (методами) измерений.

Описание средства измерений

Принцип действия спектрометра эмиссионного «СПАС-05» (в дальнейшем спектрометр) основан на методе эмиссионного спектрального анализа, использующего зависимость интенсивности спектральных линий от содержания элемента в пробе.

Спектрометр «СПАС-05» по конструктивному исполнению является настольным прибором и состоит из системы возбуждения спектра, системы регистрации спектра, системы управления подачей аргона, а также встроенного компьютера. Баллон с аргоном высокой (спектральной) чистоты с объемной долей аргона не менее 99,998 %, соединен со спектрометром трубкой из полиэтилена высокого давления. К спектрометру подключаются монитор, клавиатура, мышь, источник бесперебойного питания. В модификации спектрометра СПАС-05 применяется вакуумный насос, соединенный со спектрометром вакуумным шлангом.

Проба, химический состав которой надо определить устанавливается на столик. Электрод через плату разрядника соединен с генератором. Величина промежутка между анализируемым образцом и электродом устанавливается при помощи специального калибра. Промежуток между образцом и электродом продувается потоком аргона высокой чистоты (чистота газа не менее 99,998%). Регулировка потока аргона осуществляется регулятором расхода газа (РРГ). Подача аргона на РРГ осуществляется через газовый клапан. К промежутку между вольфрамовым электродом и образцом прикладывается импульсное напряжение для зажигания периодического разряда униполярного искры, электрод всегда является анодом. Величина и форма напряжения и тока формируются генератором искры. Величина сопротивления в разрядном контуре генератора искры может меняться по команде от встроенного к корпус спектрометра компьютера. Система возбуждения спектра состоит из двух блоков, электрически соединённых между собой: генератора электрических импульсов и схемы разрядника.

Изображение искрового разряда фокусируется при помощи кварцевого конденсора на входную щель полихроматора, собранного по схеме Пашен-Рунге, где раскладывается в спектр при помощи дифракционной решетки. Диаметр круга Роуланда составляет 330 мм. Дифракционная решетка: 2100 штрихов/мм. Разложенный спектр регистрируется при помощи системы регистрации спектра на базе набора фотодиодных линейных приборов с зарядовой связью (ПЗС-сенсоров). Конструктивно полихроматор, дифракционная решетка и набор ПЗС-сенсоров располагаются на общем оптическом основании в корпусе спектрометра.

Спектрометры эмиссионные «СПАС-05» выпускаются в трех модификациях: «СПАС-05», «СПАС-05В», «СПАС-05А». Базовая модификация спектрометра «СПАС-05» снабжается вакуумным насосом, соединенным со спектрометром вакуумным шлангом через вакуумный клапан. Вакуумный насос создает в корпусе спектрометра разряжение достаточное для регистрации спектра в области вакуумного ультрафиолета. В модификации «СПАС-05А» для регистрации спектра в области вакуумного ультрафиолета используются инертные свойства аргона, для чего корпус спектрометра заполняется аргоном. Требуемое давление поддерживается с помощью РРГ, управляемого контроллером. Корпус спектрометра модификации «СПАС-ся герметичным и заполнен атмосферным воздухом.

Система регистрации спектра служит для управления, преобразования в цифровой вид и обработки сигналов, получаемых с ПЗС-сенсоров. Система регистрации состоит из нескольких функциональных узлов, они размещены внутри спектрометра. ПЗС-сенсоры преобразуют оптический спектральный сигнал в электрический. Выходные сигналы всех ПЗС-сенсоров передаются на АЦП, затем в компьютер, встроенный в корпус спектрометра. Управление системой регистрации, обработка зарегистрированного спектра и вычисление концентраций химических элементов осуществляется встроенным в корпус спектрометра компьютером при помощи специально программного обеспечения SPAS. В целях предотвращения несанкционированного доступа внутрь спектрометра, его корпус опломбирован специальными фирменными наклейками.

Общий вид спектрометра эмиссионного «СПАС-05», обозначение места нанесения знака поверки представлены на рисунке 1.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2.

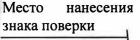


Рисунок 1 — Общий вид спектрометра эмиссионного «СПАС-05»

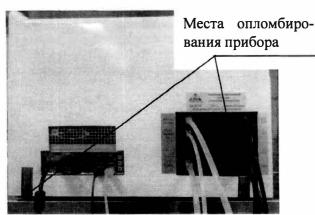


Рисунок 2 — Схема пломбировки от несанкционированного доступа спектрометра эмиссионного «СПАС-05»

Программное обеспечение

Спектрометры эмиссионные «СПАС-05» оснащаются встроенным программным обеспечением SPAS, которое управляет работой спектрометра, отображает результаты, обрабатывает, передает и хранит полученные данные. Уровень защиты ПО SPAS от непреднамеренных и преднамеренных изменений соответствует среднему уровню по Р 50.2.077-2014. Влияние ПО SPAS на метрологические характеристики спектрометров эмиссионных «СПАС-05» учтено при их нормировании. Идентификационные данные ПО SPAS приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО SPAS

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	SPAS	
Номер версии (идентификационный номер) ПО	не ниже 1.0.0.ХХ*	
Цифровой идентификатор ПО	df 2a c8 ff 62 43 95 44 8e eb 90 fc bb 11 48 4 (файл spl.exe для версии 1.0.0.53)	
Алгоритм цифрового идентификатора ПО	MD5	
* версия ПО может иметь дополнительные цифро-	вые суффиксы	

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Рабочий спектральный диапазон, нм	
- «СПАС-05» (вакуумный вариант)	от 174 до 450
- «СПАС-05А» (аргонозаполненный вариант)	от 174 до 450
- «СПАС-05В» (невакуумный вариант)	от 185 до 450
Спектральное разрешение, нм, не более	0,05
Пределы детектирования легирующих и примесных элементов при анализе сталей, %, не более	
- марганца	0,0005
- углерода, хрома, никеля	0,0010
- кремния	0,0020
Относительные СКО выходного сигнала спектрометра в режиме	
измерения относительных интенсивностей при анализе сталей, %, не более	
- в диапазоне массовых долей элементов от 0,0005 % до 0,01 включ., %	30
- в диапазоне массовых долей элементов св. 0,010 % до 0,10 включ., %	10
- в диапазоне массовых долей элементов св. 0,10 % до 1,0 включ., $\%$	7,5
- в диапазоне массовых долей элементов св. 1,0 % до 45,0 %	5,0

 Габлица 3 – Основные технические характеристики

Наименование характеристики	Значение 1,44	
Обратная линейная дисперсия (1-й порядок спектра), нм/мм, не более		
Система возбуждения спектра (тип разряда - низковольтная уни-		
полярная искра в атмосфере аргона):		
напряжение, В	300, 400, 500	
частота, Гц	200, 300, 400	
емкости, мкФ	2,2; 4,4	
Система регистрации:		
– Фотоприемники	7 фотодиодных ПЗС	
 Размер фоточувствительной области ПЗС, мм 	30×0.2	
 Минимальное время накопления спектра, с 	0,001	
Время измерения, с	20	
Габаритные размеры (Д×Ш×В), мм, не более	690 × 500 × 420	
Масса, кг, не более	50	
Потребляемая мощность, В · А, не более,	250	
при горении искры, В А, не более,	450	
Электрическое питание:	220+22	
- напряжение, В,		
- частита, Гц	50±2	
Время установления рабочего режима, мин, не более,		
Средний срок службы, лет	1	

Наименование характеристики	Значение	
Средняя наработка спектрометра на отказ, ч, не менее	4800	
Условия эксплуатации:		
диапазон температуры, °С	от +15 до +25	
диапазон атмосферного давления, кПа	от 84,0 до 106,7	
относительная влажность при + 25 °C, %,	не более 80	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации спектрометров эмиссионных «СПАС-05» методом компьютерной графики и на заднюю панель корпуса спектрометра в виде специальной таблички.

Комплектность средства измерений

Определяется заказом и отражается в паспорте на прибор; базовый комплект поставки спектрометров эмиссионных «СПАС-05» приведен в таблице 4.

Таблица 4 - Комплектность спектрометров эмиссионных «СПАС-05»

Наименование	Обозначение	Количество
Спектрометр эмиссионный «СПАС-05» (в зависимости от модификации)		1 шт.
Насос вакуумный со шлангом вакуумным длиной не менее 0,6 м (для модификации «СПАС-05)		1 шт.
Монитор		l шт.
Клавиатура		1 шт.
Манипулятор типа "Мышь"		1 шт.
Источник бесперебойного питания		1 шт.
Трубка ПЭВД или медная длиной не менее 1,5 м со штуцером для подачи аргона от баллона		1 шт.
Трубка ПЭВД, ПУ, ПП или ПЭ длиной не менее 1,5 м для отвода аргона		1 шт.
Комплект ЗИП		1 комплект
Программное обеспечение SPAS		1 диск
Паспорт	АКСП.415311.005 ПС	1 экз.
Руководство по эксплуатации	АКСП.415311.005 РЭ	1 экз.
Методика поверки	МП-242-2123-2017	1 экз.

Поверка

осуществляется по документу МП-242-2123-2017 «Спектрометры эмиссионные «СПАС-05» Методика поверки», утвержденному ФГУП "ВНИИМ им. Д.И. Менделеева" «28» июня 2017 г.

Основные средства поверки: стандартные образцы состава сталей углеродистых и легированных ГСО 10504-2014 (комплект ИСО УГ0к-УГ9к).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на боковую панель спектрометра, как показано на рисунке 1.

Сведения о методиках (методах) измерений

TURNST BEFORE LUSTING

CONTRACTOR OF THE PARTY OF THE

приведены в эксплуатационной документации, а также:

ГОСТ Р 54153-2010 «Сталь. Метод атомно-эмиссионного спектрального анализа»

ГОСТ 27611-88 «Чугун. Метод фотоэлектрического спектрального анализа»

ГОСТ 7727-81 «Сплавы алюминиевые. Методы спектрального анализа»

ГОСТ 20068.1-79 — ГОСТ 20068.3-79 «Бронзы безоловянные. Методы спектрального и атомно-абсорбционного анализа»

ГОСТ 9716.1-79 – ГОСТ 9716.3-79 «Сплавы медно-цинковые. Методы спектрального анализа»

ГОСТ 7728-79 «Сплавы магниевые. Методы спектрального анализа»

Нормативные и технические документы, устанавливающие требования к спектрометрам эмиссионным «СПАС-05»

MANUAL PROPERTY AND THE PROPERTY OF THE PROPER

AND ENGINEERING PROPERTY OF THE PROPERTY OF TH

Технические условия ТУ 4434-005-27534057-2016

Marchael Will, School Steel, Land C. C. Physics St.